Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            We present MeerKAT H Iobservations of ESO 137-001, a quintessential jellyfish galaxy with long multi-phase tails formed due to the interaction with the intra-cluster medium of its host galaxy cluster, ACO 3627. Our observations reveal the presence of H Iin both the disc and outer regions of the galaxy for the first time, with a total H Imass of (3.5 ± 0.4)×108M⊙. ESO 137-001 is at an advanced stage of gas stripping; it is extremely H Ideficient and seems to have lost 90% of its initial H Imass; about 2/3 of the surviving H Iis found at larger radius than expected for a normal H Idisc and forms ∼40 kpc tail coincident with the tail detected at other wavelengths. Only ∼10% of the surviving H Iis still found within the stellar disc, consistent with the expectation of an outside-in truncation due to ram pressure. Similarly to other jellyfish galaxies, ESO137-001 has a high star formation rate for the low amount of H Idetected. We measure an H Idepletion time of 0.29 Gyr. However, when taking into account the total gas (H I+ H2) content, the depletion time is consistent with typical values measured in nearby spiral galaxies. This suggests that ESO 137-001 is at its current stage of ram pressure interaction characterised by an efficient H Istripping, rather than an enhanced conversion of H Ito H2, which was recently observed in some other jellyfish galaxies.more » « lessFree, publicly-accessible full text available February 1, 2026
- 
            ABSTRACT The 21 cm transition from neutral hydrogen promises to be the best observational probe of the epoch of reionization (EoR). The main difficulty in measuring the 21 cm signal is the presence of bright foregrounds that require very accurate interferometric calibration. Closure quantities may circumvent the calibration requirements but may be, however, affected by direction-dependent effects, particularly antenna primary beam responses. This work investigates the impact of antenna primary beams affected by mutual coupling on the closure phase and its power spectrum. Our simulations show that primary beams affected by mutual coupling lead to a leakage of foreground power into the EoR window, which can be up to ∼104 times higher than the case where no mutual coupling is considered. This leakage is, however, essentially confined at k < 0.3 h Mpc−1 for triads that include 29 m baselines. The leakage magnitude is more pronounced when bright foregrounds appear in the antenna sidelobes, as expected. Finally, we find that triads that include mutual coupling beams different from each other have power spectra similar to triads that include the same type of mutual coupling beam, indicating that beam-to-beam variation within triads (or visibility pairs) is not the major source of foreground leakage in the EoR window.more » « less
- 
            Borexino could efficiently distinguish between and radiation in its liquid scintillator by the characteristic time profile of its scintillation pulse. This discrimination, first demonstrated on the ton scale in the counting test facility prototype, was used throughout the lifetime of the experiment between 2007 and 2021. With this method, the events are identified and subtracted from the solar neutrino events similar to . This is particularly important in liquid scintillators, as the scintillation is strongly quenched. In Borexino, the prominent decay peak was a background in the energy range of electrons scattered from solar neutrinos. Optimal discrimination was achieved with a , with a higher ability to leverage the timing information of the scintillation photons detected by the photomultiplier tubes. An event-by-event, high efficiency, stable, and uniform pulse shape discrimination was essential in characterizing the spatial distribution of background in the detector. This benefited most Borexino measurements, including solar neutrinos in the chain and the first direct observation of the CNO cycle in the Sun. This paper presents key milestones in discrimination in Borexino as a term of comparison for current and future large liquid scintillator detectors. Published by the American Physical Society2024more » « less
- 
            Abstract The DarkSide-20k dark matter experiment, currently under construction at LNGS, features a dual-phase time projection chamber (TPC) with a ∼ 50 t argon target from an underground well. At this scale, it is crucial to optimise the argon flow pattern for efficient target purification and for fast distribution of internal gaseous calibration sources with lifetimes of the order of hours. To this end, we have performed computational fluid dynamics simulations and heat transfer calculations. The residence time distribution shows that the detector is well-mixed on time-scales of the turnover time (∼ 40 d). Notably, simulations show that despite a two-order-of-magnitude difference between the turnover time and the half-life of83mKr of 1.83 h, source atoms have the highest probability to reach the centre of the TPC 13 min after their injection, allowing for a homogeneous distribution before undergoing radioactive decay. We further analyse the thermal aspects of dual-phase operation and define the requirements for the formation of a stable gas pocket on top of the liquid. We find a best-estimate value for the heat transfer rate at the liquid-gas interface of 62 W with an upper limit of 144 W and a minimum gas pocket inlet temperature of 89 K to avoid condensation on the acrylic anode. This study also informs the placement of liquid inlets and outlets in the TPC. The presented techniques are widely applicable to other large-scale, noble-liquid detectors.more » « lessFree, publicly-accessible full text available June 1, 2026
- 
            Dark matter may induce an event in an Earth-based detector, and its event rate is predicted to show an annual modulation as a result of the Earth’s orbital motion around the Sun. We searched for this modulation signature using the ionization signal of the DarkSide-50 liquid argon time projection chamber. No significant signature compatible with dark matter is observed in the electron recoil equivalent energy range above , the lowest threshold ever achieved in such a search. Published by the American Physical Society2024more » « lessFree, publicly-accessible full text available November 1, 2025
- 
            Abstract DarkSide-20k is a novel liquid argon dark matter detector currently under construction at the Laboratori Nazionali del Gran Sasso (LNGS) of the Istituto Nazionale di Fisica Nucleare (INFN) that will push the sensitivity for Weakly Interacting Massive Particle (WIMP) detection into the neutrino fog. The core of the apparatus is a dual-phase Time Projection Chamber (TPC), filled with 50 tonnes of low radioactivity underground argon (UAr) acting as the WIMP target. NUV-HD-cryo Silicon Photomultipliers (SiPM)s designed by Fondazione Bruno Kessler (FBK) (Trento, Italy) were selected as the photon sensors covering two$$10.5~\text {m}^2$$ Optical Planes, one at each end of the TPC, and a total of$$5~\text {m}^2$$ photosensitive surface for the liquid argon veto detectors. This paper describes the Quality Assurance and Quality Control (QA/QC) plan and procedures accompanying the production of FBK NUV-HD-cryo SiPM wafers manufactured by LFoundry s.r.l. (Avezzano, AQ, Italy). SiPM characteristics are measured at 77 K at the wafer level with a custom-designed probe station. As of March 2025, 1314 of the 1400 production wafers (94% of the total) for DarkSide-20k were tested. The wafer yield is$$93.2\pm 2.5$$ %, which exceeds the 80% specification defined in the original DarkSide-20k production plan.more » « lessFree, publicly-accessible full text available May 1, 2026
- 
            Context. The Shapley Supercluster (⟨ z ⟩≈0.048) contains several tens of gravitationally bound clusters and groups, making it an ideal subject for radio studies of cluster mergers. Aims. We used new high sensitivity radio observations to investigate the less energetic events of mass assembly in the Shapley Supercluster from supercluster down to galactic scales. Methods. We created total intensity images of the full region between A3558 and A3562, from ∼230 to ∼1650 MHz, using ASKAP, MeerKAT and the GMRT, with sensitivities ranging from ∼6 to ∼100 μJy beam −1 . We performed a detailed morphological and spectral study of the extended emission features, complemented with ESO-VST optical imaging and X-ray data from XMM-Newton . Results. We report the first GHz frequency detection of extremely low brightness intercluster diffuse emission on a ∼1 Mpc scale connecting a cluster and a group, namely: A3562 and the group SC 1329–313. It is morphologically similar to the X-ray emission in the region. We also found (1) a radio tail generated by ram pressure stripping in the galaxy SOS 61086 in SC 1329–313; (2) a head-tail radio galaxy, whose tail is broken and culminates in a misaligned bar; (3) ultrasteep diffuse emission at the centre of A3558. Finally (4), we confirm the ultra-steep spectrum nature of the radio halo in A3562. Conclusions. Our study strongly supports the scenario of a flyby of SC 1329–313 north of A3562 into the supercluster core. This event perturbed the centre of A3562, leaving traces of this interaction in the form of turbulence between A3562 and SC 1329–313, at the origin of the radio bridge and eventually affecting the evolution of individual supercluster galaxies by triggering ram pressure stripping. Our work shows that minor mergers can be spectacular and have the potential to generate diffuse radio emission that carries important information on the formation of large-scale structures in the Universe.more » « less
- 
            Abstract The search for neutrino events in correlation with gravitational wave (GW) events for three observing runs (O1, O2 and O3) from 09/2015 to 03/2020 has been performed using the Borexino data-set of the same period. We have searched for signals of neutrino-electron scattering and inverse beta-decay (IBD) within a time window of$$\pm \, 1000$$ s centered at the detection moment of a particular GW event. The search was done with three visible energy thresholds of 0.25, 0.8 and 3.0 MeV. Two types of incoming neutrino spectra were considered: the mono-energetic line and the supernova-like spectrum. GW candidates originated by merging binaries of black holes (BHBH), neutron stars (NSNS) and neutron star and black hole (NSBH) were analyzed separately. Additionally, the subset of most intensive BHBH mergers at closer distances and with larger radiative mass than the rest was considered. In total, follow-ups of 74 out of 93 gravitational waves reported in the GWTC-3 catalog were analyzed and no statistically significant excess over the background was observed. As a result, the strongest upper limits on GW-associated neutrino and antineutrino fluences for all flavors ($$\nu _e, \nu _\mu , \nu _\tau $$ ) at the level$$10^9{-}10^{15}~\textrm{cm}^{-2}\,\textrm{GW}^{-1}$$ have been obtained in the 0.5–5 MeV neutrino energy range.more » « less
- 
            Abstract The stability of a dark matter detector on the timescale of a few years is a key requirement due to the large exposure needed to achieve a competitive sensitivity. It is especially crucial to enable the detector to potentially detect any annual event rate modulation, an expected dark matter signature. In this work, we present the performance history of the DarkSide-50 dual-phase argon time projection chamber over its almost three-year low-radioactivity argon run. In particular, we focus on the electroluminescence signal that enables sensitivity to sub-keV energy depositions. The stability of the electroluminescence yield is found to be better than 0.5%. Finally, we show the temporal evolution of the observed event rate around the sub-keV region being consistent to the background prediction.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
